top of page

  1. Viral vector-mediated expression of Nav1.1, after seizure onset, reduces epilepsy in mice with Dravet syndrome. Fadila S, Beucher B, Dopeso-Reyes IG, Mavashov A, Brusel M, Anderson K, Ismeurt C, Goldberg EM, Ricobaraza A, Hernandez-Alcoceba R, Kremer EJ, Rubinstein M (2023) J Clin Invest. 16,e159316.  

  2. Heat-induced seizures, premature mortality, and hyperactivity in a novel Scn1a nonsense model for Dravet syndrome. Mavashov A, Brusel M, Liu J, Woytowicz V, Bae H, Chen YH, Dani VS, Cardenal-Muñoz E, Spinosa V, Aibar JÁ, Rubinstein M. (2023) Front Cell Neurosci. 17,1149391. 

  3. Acute effect of antiseizure drugs on background oscillations in Scn1a A1783V Dravet syndrome mouse model. Quinn S, Brusel M, Ovadia M, Rubinstein M (2023) Front Pharmacol. 14,1118216. 

  4. Functional investigation of a neuronal microcircuit in the CA1 area of the hippocampus reveals synaptic dysfunction in Dravet syndrome mice. Almog Y, Mavashov A, Brusel M, Rubinstein M (2022) Front Mol Neurosci.15, 823640. 

  5. Novel ADNP syndrome mice reveal dramatic sex-specific peripheral gene expression with brain synaptic and tau pathologies. Karmon G, Sragovich S, Hacohen-Kleiman G, Ben-Horin-Hazak I, Kasparek P, Schuster B, Sedlacek R, Pasmanik-Chor M, Theotokis P, Touloumi O, Zoidou S, Huang L, Wu PY, Shi R, Kapitansky O, Lobyntseva A, Giladi E, Shapira G, Shomron N, Bereswill S, Heimesaat MM, Grigoriadis N, McKinney RA, Rubinstein M, Gozes I. (2022) Biol Psychiatry. 92,81-95. 

  6. Transfer of SCN1A to the brain of adolescent mouse model of Dravet syndrome improves epileptic, motor, and behavioral manifestations. Mora-Jimenez L, Valencia M, Sanchez-Carpintero R, Tønnesen J, Fadila S, Rubinstein M, Gonzalez-Aparicio M, Bunuales M, Fernandez-Pierola E, Nicolas MJ, Puerta E, Miguelez C, Minguez PG, Lumbreras S, Gonzalez-Aseguinolaza G, Ricobaraza A, Hernandez-Alcoceba R. (2021) Mol Ther Nucleic Acids. 19, 25:585-602. 

  7. Reprogramming of two induced pluripotent stem cell lines from a heterozygous GRIN2D developmental and epileptic encephalopathy (DEE) patient (BGUi011-A) and from a healthy family relative (BGUi012-A). Rabinski, T., Sagiv, S.T., Hausman-Kedem, M., Fattal-Valevski, A., Rubinstein, M., Avraham, K.B., Vatine, G.D. (2021) Stem Cell Res 51,102178

  8. Almog, Y., Fadila, S., Brusel, M., Mavashov, A., Anderson, K.L., Rubinstein, M. (2021) Developmental alterations in firing properties of hippocampal CA1 inhibitory and excitatory neurons in a mouse model of Dravet syndrome. Neurobiology of Disease 148:105209 

  9. Fadila, S., Quinn, S., Turchetti Maia, A., Yakubovich, D., Ovadia, M., Anderson K., Giladi, M., Rubinstein, M. (2020). Convulsive seizures and some behavioral comorbidities are uncoupled in the Scn1aA1783V Drave syndrome mouse model. Epilepsia 61, 2289-2300.

  10. Nadar-Ponniah, P.T., Taiber, S., Caspi, M., Koffler-Brill, T., Dror, A.A., Siman-Tov, R., Rubinstein, M., Padmanabhan, K., Luxenburg, C., Lang, R.A., Avraham, K.B., Rosin-Arbesfeld, R. (2020). Striatin is required for hearing and affects inner hair cells and ribbon synapses. Front Cell Dev Biol 8, 615. 

  11. Styr. B., Gonen, N., Zarhin, D., Ruggiero, A., Atsmon, R., Gazit, N., Braun, G., Frere, S., Vertkin, I., Shapira, I., Harel, M., Heim, L.R., Katsenelson, M., Rechnitz, O., Fadila, S., Derdikman, D., Rubinstein, M., Geiger, T., Ruppin, E. and Slutsky, I. (2019). Mitochondrial Regulation of the Hippocampal Firing Rate Set Point and Seizure Susceptibility. Neuron 102, 1009-1024.

  12. Nissenkorn, A., Almog, Y., Adler, I., Safrin, M., Brusel, M., Marom, M., Bercovich, S., Yakubovich, D., Tzadok, M., Ben-Zeev, B. and Rubinstein, M. (2019). In vivo, in vitro and in silico correlations of four de novo SCN1A missense mutations. PLoS One 14, e0211901.

  13. Rubinstein, M., Patowary, A., Stanaway, I.B., McCord, E., Scheuer, T., Nickerson, D., Raskind, W.H., Wijsman, E.M., Bernier, R., Catterall, W.A. and Brkanac, Z. (2018). Association of rare missense variants in the second intracellular loop of NaV1.7 sodium channels with familial autism. Molecular Psychiatry 23, 231-239.

  14. Dascal, N. and Rubinstein, M. (2017). Lithium reduces the span of G protein-activated K+ (GIRK) channels inhibition in hippocampal neurons. Bipolar Disorders 19, 568-574.

  15. Yakubovich, D., Berlin, S., Kahanovitch, U., Rubinstein, M., Farhy-Tselnicker, I., Styr, B., Keren-Raifman, T., Dessauer, C.W., and Dascal, N. (2015). A quantitative model of the GIRK1/2 channel reveals that its basal and evoked activities are controlled by unequal stoichiometry of Gα and Gβγ. PLoS Computational Biology 11, e1004598.

  16. Rubinstein, M., Han, S., Tai, C., Westenbroek, R.E., Hunker, A., Scheuer, T., and Catterall, W.A. (2015). Dissecting the phenotypes of Dravet syndrome by gene deletion. Brain 138, 2219-2233.

  17. Rubinstein, M., Westenbroek, R.E., Yu, F.H., Jones, C.J., Scheuer, T., and Catterall, W.A. (2015). Genetic background modulates impaired excitability of inhibitory neurons in a mouse model of Dravet syndrome. Neurobiology of Disease 73, 106-117.

  18. Baek, J.H., Rubinstein, M., Scheuer, T., and Trimmer, J.S. (2014). Reciprocal changes in phosphorylation and methylation of mammalian brain sodium channels in response to seizures. The Journal of Biological Chemistry 289, 15363-15373.

  19. Kahanovitch, U., Tsemakhovich, V., Berlin, S., Rubinstein, M., Styr, B., Castel, R., Peleg, S., Tabak, G., Dessauer, C.W., Ivanina, T., and Dascal, N. (2014). Recruitment of Gβγ controls the basal activity of G-protein coupled inwardly rectifying potassium (GIRK) channels: crucial role of distal C terminus of GIRK1. The Journal of Physiology 592, 5373-5390.

  20. Berlin, S., Keren-Raifman, T., Castel, R., Rubinstein, M., Dessauer, C.W., Ivanina, T., and Dascal, N. (2010). Gαi and Gβγ jointly regulate the conformations of a Gβγ effector, the neuronal G protein-activated K+ channel (GIRK). The Journal of Biological Chemistry 285, 6179-6185.

  21. Rubinstein, M., Peleg, S., Berlin, S., Brass, D., Keren-Raifman, T., Dessauer, C.W., Ivanina, T., and Dascal, N. (2009). Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GαiGDP and Gβγ. The Journal of Physiology 587, 3473-3491.

  22. Rubinstein, M., Peleg, S., Berlin, S., Brass, D., and Dascal, N. (2007). Gαi3 primes the G protein-activated K+ channels for activation by coexpressed Gβγ in intact Xenopus oocytes. The Journal of Physiology 581, 17-32.

  23. Werner, H., Idelman, G., Rubinstein, M., Pattee, P., Nagalla, S.R., and Roberts, C.T., Jr. (2007). A novel EWS-WT1 gene fusion product in desmoplastic small round cell tumor is a potent transactivator of the insulin-like growth factor-I receptor (IGF-IR) gene. Cancer Letters 247, 84-90.

  24. Rubinstein, M., Idelman, G., Plymate, S.R., Narla, G., Friedman, S.L., and Werner, H. (2004). Transcriptional activation of the insulin-like growth factor I receptor gene by the Kruppel-like factor 6 (KLF6) tumor suppressor protein: potential interactions between KLF6 and p53. Endocrinology 145, 3769-3777.

bottom of page